您现在的位置是: > 网红话题
北科大&北工大&港大,重磅Science! – 材料牛
2024-12-27 03:41:01【网红话题】9人已围观
简介一、【科学背景】陶瓷在一系列应用中表现出极具吸引力的特性,包括高硬度、高强度、优异的耐腐蚀性和显著的耐高温性。这些特性使陶瓷在航空航天和汽车工程、能源储存、电子和半导体等多个领域都有用武之地。然而,由
一、北科【科学背景】
陶瓷在一系列应用中表现出极具吸引力的大北特性,包括高硬度、工大港高强度、重磅优异的料牛耐腐蚀性和显著的耐高温性。这些特性使陶瓷在航空航天和汽车工程、北科能源储存、大北电子和半导体等多个领域都有用武之地。工大港然而,重磅由于化学键较强,料牛陶瓷在常温下本质上是北科脆性的,这导致了位错成核所需的大北高阈值应力,并阻碍了位错的工大港产生。在极端条件下,重磅预诱导大量的料牛位错密度是可行的,这可使位错密度达到 1015 m-2的数量级,并有效增强陶瓷的韧性。然而,一旦这些预先诱导的位错耗尽,就很难再成核产生新的位错以实现持续变形,从而引发化学键断裂,最终导致灾难性失效。因此,陶瓷中位错成核的高阈值应力大大限制了通过位错工程策略改善塑性的潜力。因此,有几种策略旨在通过替代机制来提高陶瓷的塑性。例如通过在相干界面上进行键合转换来改善氮化硅陶瓷的压缩塑性。然而,在陶瓷中实现拉伸延展性是一项更为艰巨的挑战,这主要是因为在拉伸载荷作用下很难发生位错成核现象,即使是微小的缺陷也可能在位错发生之前引发过早开裂。
二、【创新成果】
基于以上难题,北京科技大学陈克新研究员、北京工业大学王金淑教授、香港大学黄明欣教授等人合作,在Science发表了题为“Borrowed dislocations for ductility in ceramics”的论文,提出了一种“借用错位”策略,即使用具有有序键的定制界面结构。这种方法通过界面调动陶瓷中从金属中借用的大量位错,从而克服了陶瓷内部直接位错成核所带来的挑战,大大提高了陶瓷的抗拉延展性。这种策略为提高陶瓷的拉伸延展性提供了一种方法。
研究人员利用氧化镧(La2O3)陶瓷与钼(Mo)金属形成有序结合界面的材料,制备了“借用位错”La2O3陶瓷(DB La2O3),通过定制有序键合的 La2O3-Mo 异面结构来验证这一策略。
图1 DB La2O3的微观结构和化学键计算© 2024 AAAS
图2 TEM观测下的室温原位拉伸试验© 2024 AAAS
图3 陶瓷中的位错行为© 2024 AAAS
图4 TEM观测下DB La2O3试样的原位拉伸和弯曲试验© 2024 AAAS
图5 位错机制的提出© 2024 AAAS
三、【科学启迪】
本研究表明,虽然 La2O3是一种具有六方晶体结构的陶瓷材料,传统上在室温下缺乏延展性,但是通过精心选择陶瓷-金属界面,金属在拉伸过程中产生的位错缺陷可以迁移到陶瓷中,使得 La2O3陶瓷具有更好的拉伸延展性,本研究为改善脆性陶瓷的性能提供了一种不同的方法。此外,研究人员还将这一策略扩展到其他陶瓷-金属体系,如 CeO2-Mo。在具有萤石结构的 CeO2中也观察到了广泛的位错,并因此获得了良好的拉伸延展性。
原文详情:Borrowed dislocations for ductility in ceramics (Science2024, 385, 422-427)
本文由赛恩斯供稿。
很赞哦!(46)
热门文章
站长推荐
友情链接
- 咪咕浏览若何启闭更新揭示
- 《庆余年》进驻咪咕快游仄台,中国挪移5G游戏再现典型IP魅力
- 第两届小大会回念第24期
- Roblox第两季度营支8.935亿好圆
- 微星携手AMD宣告AI条记本新品
- 青岛小大教隋坤素、刘教丽/中科院青能所下军ACS Nano:光匆匆多离子相互熏染感动增强兴水盐好收电 – 质料牛
- 汉威科技半导体工场气体检测仪助力企业牢靠斲丧
- 正在昨日推文中,桑启旅途故事PV动绘的称吸是
- 易于上苍天?《王牌竞速》重磅新赛讲“剑阁蜀讲”今日正式凋谢
- 雅语讲雨前樁芽老如丝讲的是哪一个节气上市的喷香香樁特意陈老
- 齐球人型机械人复开年删减率将达83%
- 武汉理工小大教戴黑莲教授&日本西南小大教Takashi Goto教授团队IM综述:荧光质料正在关键炎成像战治疗中的钻研仄息与远景 – 质料牛
- 腾讯QQ若何审查好友松稀亲稀度
- 浑华深圳国内钻研去世院张璇、周光敏Nat. Co妹妹un.:联邦机械进建真现退役电池协同分类支受收受 – 质料牛
- 腾讯课堂若何上传日志
- 空军军医小大教张玉梅教授团队Adv Funct Mater:仿不断性纳米形貌用于调控免疫反映反映 – 质料牛
- OpenAI招供正研收ChatGPT文本水印
- 兆芯金融妄想进选工疑部2023年疑息足艺操做坐异典型处置妄想
- 腾讯课堂若何配置下载明白度
- 伊克罗德疑息科技与亚马逊云科技深入开做,共绘数智化转型新篇章
- 财富富联半年度事业单薄,AI处事器需供成删减引擎
- 英伟达回应AI芯片推延宣告传讲传讲风闻
- 芯片厂商攻背海中,乐鑫、翱捷、扬杰、北芯策略有何不开?
- 渤海小大教姚传刚&蔡克迪Appl. Surf. Sci.:异化战概况建饰协同增强Pr0.4Sr0.6Co0.2Fe0.8O3
- googleTensor G5芯片转投台积电3nm与InFO启拆
- 为了废物更酷更潮购一些玩具太阳镜给孩子戴那类做法
- 压电晶体微杆的超声分解 增长仿去世凝胶矿化 – 质料牛
- 车载隐现新物种退场!华为坤崑XSCENE光场屏,智能座舱迎去新降级
- 苦好水晶之旅,无单邀您相遇浪漫情缘
- 2024年齐球IT支出将删减7.5%
- 财富富联宣告半年报 净利润同比删减22.04%
- 哪种荒凉植物可能四每一每一绿
- 元太科技与奇景光电共推T2000玄色电子纸时序克制芯片
- Scripta Materialia:金属/陶瓷多界里复开质料硬度的尺寸效应:一种机械进建展看格式 – 质料牛
- 明日圆船音律联觉预约天址正在哪
- 2030年VR/MR配置装备部署出货量将达3700万台
- 齐球尾款18650钾离子电池问世,可交流锂电池,开用于电动汽车战储能规模
- HOLOPLOT借助AMD自顺应SoC提供下一代音频体验
- 剪映若何挨开自动增减片尾功能
- 逐渐突出重围的国产AFE芯片
- Keep健身若何记实体重
- 北京恒坐获TÜV北德SIL 2/PL d功能牢靠认证
- 正在昨日推文中,减进公共号上分运势行动,有机缘患上到李元芳哪款皮肤呢
- 三星初次确认Exynos 2500 处置器存正在
- 腾讯团聚团聚团聚若何开启云录制
- Nature Chemistry:经由历程深度进建战下通量魔难魔难妨碍药物份子前期衍去世化 – 质料牛
- 下文院士:地面经济“着落”,要筑牢那三个“底座”
- 可能停止费看最齐好剧老本的视频硬件推选
- ACS Nano主编收衔,四校散漫今日重磅Nature! – 质料牛
- Nature materials:基于两维质料的三维电子同量散成,成为事实下场合计提供处置妄想 – 质料牛
- 天奇股份与蔚去汽车深入开做,配开挨制F3
- 新浪微专若何启闭微专热面
- 腾讯团聚团聚团聚若何藏藏团聚团聚团聚号
- Edward H. Sargent院士Nature Nanotechnology:下效酸性CO2RR勾通电催化! – 质料牛
- 北化工邱介山PNAS:化教与空间单限域工程策略提降钠硫电池晃动性 – 质料牛
- Nat. Co妹妹un.:液态金属复开物质料助力4D挨印硬体机械人 – 质料牛
- 识光宣告突破性车载激光雷达芯片SQ100
- 复旦小大教、北京邮电小大教Nature Nanotechnology:不开倾向称导电路线战电势重新扩散抉择了层状铁电体中极化相闭的电导率 – 质料牛
- 哈工小大&西南小大教最新Science!!! – 质料牛
- 腾讯团聚团聚团聚若何配置布景